\(\int \frac {\cos ^2(e+f x) (c-c \sin (e+f x))^{3/2}}{(a+a \sin (e+f x))^{5/2}} \, dx\) [60]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 38, antiderivative size = 143 \[ \int \frac {\cos ^2(e+f x) (c-c \sin (e+f x))^{3/2}}{(a+a \sin (e+f x))^{5/2}} \, dx=-\frac {4 c^2 \cos (e+f x) \log (1+\sin (e+f x))}{a^2 f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}-\frac {2 c \cos (e+f x) \sqrt {c-c \sin (e+f x)}}{a^2 f \sqrt {a+a \sin (e+f x)}}-\frac {\cos (e+f x) (c-c \sin (e+f x))^{3/2}}{a f (a+a \sin (e+f x))^{3/2}} \]

[Out]

-cos(f*x+e)*(c-c*sin(f*x+e))^(3/2)/a/f/(a+a*sin(f*x+e))^(3/2)-4*c^2*cos(f*x+e)*ln(1+sin(f*x+e))/a^2/f/(a+a*sin
(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2)-2*c*cos(f*x+e)*(c-c*sin(f*x+e))^(1/2)/a^2/f/(a+a*sin(f*x+e))^(1/2)

Rubi [A] (verified)

Time = 0.42 (sec) , antiderivative size = 143, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.158, Rules used = {2920, 2818, 2819, 2816, 2746, 31} \[ \int \frac {\cos ^2(e+f x) (c-c \sin (e+f x))^{3/2}}{(a+a \sin (e+f x))^{5/2}} \, dx=-\frac {4 c^2 \cos (e+f x) \log (\sin (e+f x)+1)}{a^2 f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}-\frac {2 c \cos (e+f x) \sqrt {c-c \sin (e+f x)}}{a^2 f \sqrt {a \sin (e+f x)+a}}-\frac {\cos (e+f x) (c-c \sin (e+f x))^{3/2}}{a f (a \sin (e+f x)+a)^{3/2}} \]

[In]

Int[(Cos[e + f*x]^2*(c - c*Sin[e + f*x])^(3/2))/(a + a*Sin[e + f*x])^(5/2),x]

[Out]

(-4*c^2*Cos[e + f*x]*Log[1 + Sin[e + f*x]])/(a^2*f*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]]) - (2*c*C
os[e + f*x]*Sqrt[c - c*Sin[e + f*x]])/(a^2*f*Sqrt[a + a*Sin[e + f*x]]) - (Cos[e + f*x]*(c - c*Sin[e + f*x])^(3
/2))/(a*f*(a + a*Sin[e + f*x])^(3/2))

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 2746

Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(b^p*f), S
ubst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x]
&& IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2, 0] && (GeQ[p, -1] ||  !IntegerQ[m + 1/2])

Rule 2816

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[a
*c*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])), Int[Cos[e + f*x]/(c + d*Sin[e + f*x]),
x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 2818

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[-2*b*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e + f*x])^n/(f*(2*n + 1))), x] - Dist[b*((2*m - 1)
/(d*(2*n + 1))), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e
, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IGtQ[m - 1/2, 0] && LtQ[n, -1] &&  !(ILtQ[m + n, 0] && G
tQ[2*m + n + 1, 0])

Rule 2819

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[(-b)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e + f*x])^n/(f*(m + n))), x] + Dist[a*((2*m - 1)/(
m + n)), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&
 EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IGtQ[m - 1/2, 0] &&  !LtQ[n, -1] &&  !(IGtQ[n - 1/2, 0] && LtQ[n, m
]) &&  !(ILtQ[m + n, 0] && GtQ[2*m + n + 1, 0])

Rule 2920

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*
(x_)])^(n_.), x_Symbol] :> Dist[1/(a^(p/2)*c^(p/2)), Int[(a + b*Sin[e + f*x])^(m + p/2)*(c + d*Sin[e + f*x])^(
n + p/2), x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[p
/2]

Rubi steps \begin{align*} \text {integral}& = \frac {\int \frac {(c-c \sin (e+f x))^{5/2}}{(a+a \sin (e+f x))^{3/2}} \, dx}{a c} \\ & = -\frac {\cos (e+f x) (c-c \sin (e+f x))^{3/2}}{a f (a+a \sin (e+f x))^{3/2}}-\frac {2 \int \frac {(c-c \sin (e+f x))^{3/2}}{\sqrt {a+a \sin (e+f x)}} \, dx}{a^2} \\ & = -\frac {2 c \cos (e+f x) \sqrt {c-c \sin (e+f x)}}{a^2 f \sqrt {a+a \sin (e+f x)}}-\frac {\cos (e+f x) (c-c \sin (e+f x))^{3/2}}{a f (a+a \sin (e+f x))^{3/2}}-\frac {(4 c) \int \frac {\sqrt {c-c \sin (e+f x)}}{\sqrt {a+a \sin (e+f x)}} \, dx}{a^2} \\ & = -\frac {2 c \cos (e+f x) \sqrt {c-c \sin (e+f x)}}{a^2 f \sqrt {a+a \sin (e+f x)}}-\frac {\cos (e+f x) (c-c \sin (e+f x))^{3/2}}{a f (a+a \sin (e+f x))^{3/2}}-\frac {\left (4 c^2 \cos (e+f x)\right ) \int \frac {\cos (e+f x)}{a+a \sin (e+f x)} \, dx}{a \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \\ & = -\frac {2 c \cos (e+f x) \sqrt {c-c \sin (e+f x)}}{a^2 f \sqrt {a+a \sin (e+f x)}}-\frac {\cos (e+f x) (c-c \sin (e+f x))^{3/2}}{a f (a+a \sin (e+f x))^{3/2}}-\frac {\left (4 c^2 \cos (e+f x)\right ) \text {Subst}\left (\int \frac {1}{a+x} \, dx,x,a \sin (e+f x)\right )}{a^2 f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \\ & = -\frac {4 c^2 \cos (e+f x) \log (1+\sin (e+f x))}{a^2 f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}-\frac {2 c \cos (e+f x) \sqrt {c-c \sin (e+f x)}}{a^2 f \sqrt {a+a \sin (e+f x)}}-\frac {\cos (e+f x) (c-c \sin (e+f x))^{3/2}}{a f (a+a \sin (e+f x))^{3/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 7.63 (sec) , antiderivative size = 153, normalized size of antiderivative = 1.07 \[ \int \frac {\cos ^2(e+f x) (c-c \sin (e+f x))^{3/2}}{(a+a \sin (e+f x))^{5/2}} \, dx=-\frac {c \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^3 \sqrt {c-c \sin (e+f x)} \left (7+\cos (2 (e+f x))+16 \log \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )+2 \left (-1+8 \log \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )\right ) \sin (e+f x)\right )}{2 f \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right ) (a (1+\sin (e+f x)))^{5/2}} \]

[In]

Integrate[(Cos[e + f*x]^2*(c - c*Sin[e + f*x])^(3/2))/(a + a*Sin[e + f*x])^(5/2),x]

[Out]

-1/2*(c*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^3*Sqrt[c - c*Sin[e + f*x]]*(7 + Cos[2*(e + f*x)] + 16*Log[Cos[(e
 + f*x)/2] + Sin[(e + f*x)/2]] + 2*(-1 + 8*Log[Cos[(e + f*x)/2] + Sin[(e + f*x)/2]])*Sin[e + f*x]))/(f*(Cos[(e
 + f*x)/2] - Sin[(e + f*x)/2])*(a*(1 + Sin[e + f*x]))^(5/2))

Maple [A] (verified)

Time = 0.21 (sec) , antiderivative size = 140, normalized size of antiderivative = 0.98

method result size
default \(\frac {\left (4 \ln \left (\frac {2}{1+\cos \left (f x +e \right )}\right ) \sin \left (f x +e \right )-8 \ln \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1\right ) \sin \left (f x +e \right )-\left (\cos ^{2}\left (f x +e \right )\right )+4 \ln \left (\frac {2}{1+\cos \left (f x +e \right )}\right )-8 \ln \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1\right )+5 \sin \left (f x +e \right )+1\right ) \sqrt {-c \left (\sin \left (f x +e \right )-1\right )}\, c \sec \left (f x +e \right )}{f \sqrt {a \left (1+\sin \left (f x +e \right )\right )}\, a^{2}}\) \(140\)

[In]

int(cos(f*x+e)^2*(c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(5/2),x,method=_RETURNVERBOSE)

[Out]

1/f*(4*ln(2/(1+cos(f*x+e)))*sin(f*x+e)-8*ln(-cot(f*x+e)+csc(f*x+e)+1)*sin(f*x+e)-cos(f*x+e)^2+4*ln(2/(1+cos(f*
x+e)))-8*ln(-cot(f*x+e)+csc(f*x+e)+1)+5*sin(f*x+e)+1)*(-c*(sin(f*x+e)-1))^(1/2)*c/(a*(1+sin(f*x+e)))^(1/2)/a^2
*sec(f*x+e)

Fricas [F]

\[ \int \frac {\cos ^2(e+f x) (c-c \sin (e+f x))^{3/2}}{(a+a \sin (e+f x))^{5/2}} \, dx=\int { \frac {{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {3}{2}} \cos \left (f x + e\right )^{2}}{{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate(cos(f*x+e)^2*(c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(5/2),x, algorithm="fricas")

[Out]

integral((c*cos(f*x + e)^2*sin(f*x + e) - c*cos(f*x + e)^2)*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)
/(3*a^3*cos(f*x + e)^2 - 4*a^3 + (a^3*cos(f*x + e)^2 - 4*a^3)*sin(f*x + e)), x)

Sympy [F]

\[ \int \frac {\cos ^2(e+f x) (c-c \sin (e+f x))^{3/2}}{(a+a \sin (e+f x))^{5/2}} \, dx=\int \frac {\left (- c \left (\sin {\left (e + f x \right )} - 1\right )\right )^{\frac {3}{2}} \cos ^{2}{\left (e + f x \right )}}{\left (a \left (\sin {\left (e + f x \right )} + 1\right )\right )^{\frac {5}{2}}}\, dx \]

[In]

integrate(cos(f*x+e)**2*(c-c*sin(f*x+e))**(3/2)/(a+a*sin(f*x+e))**(5/2),x)

[Out]

Integral((-c*(sin(e + f*x) - 1))**(3/2)*cos(e + f*x)**2/(a*(sin(e + f*x) + 1))**(5/2), x)

Maxima [F]

\[ \int \frac {\cos ^2(e+f x) (c-c \sin (e+f x))^{3/2}}{(a+a \sin (e+f x))^{5/2}} \, dx=\int { \frac {{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {3}{2}} \cos \left (f x + e\right )^{2}}{{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate(cos(f*x+e)^2*(c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(5/2),x, algorithm="maxima")

[Out]

integrate((-c*sin(f*x + e) + c)^(3/2)*cos(f*x + e)^2/(a*sin(f*x + e) + a)^(5/2), x)

Giac [A] (verification not implemented)

none

Time = 0.33 (sec) , antiderivative size = 135, normalized size of antiderivative = 0.94 \[ \int \frac {\cos ^2(e+f x) (c-c \sin (e+f x))^{3/2}}{(a+a \sin (e+f x))^{5/2}} \, dx=\frac {2 \, \sqrt {a} c^{\frac {3}{2}} {\left (\frac {\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2}}{a^{3} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} + \frac {2 \, \log \left (-\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 1\right )}{a^{3} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} - \frac {1}{{\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - 1\right )} a^{3} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}\right )} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}{f} \]

[In]

integrate(cos(f*x+e)^2*(c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(5/2),x, algorithm="giac")

[Out]

2*sqrt(a)*c^(3/2)*(sin(-1/4*pi + 1/2*f*x + 1/2*e)^2/(a^3*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))) + 2*log(-sin(-1/
4*pi + 1/2*f*x + 1/2*e)^2 + 1)/(a^3*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))) - 1/((sin(-1/4*pi + 1/2*f*x + 1/2*e)^
2 - 1)*a^3*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))))*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))/f

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^2(e+f x) (c-c \sin (e+f x))^{3/2}}{(a+a \sin (e+f x))^{5/2}} \, dx=\int \frac {{\cos \left (e+f\,x\right )}^2\,{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{3/2}}{{\left (a+a\,\sin \left (e+f\,x\right )\right )}^{5/2}} \,d x \]

[In]

int((cos(e + f*x)^2*(c - c*sin(e + f*x))^(3/2))/(a + a*sin(e + f*x))^(5/2),x)

[Out]

int((cos(e + f*x)^2*(c - c*sin(e + f*x))^(3/2))/(a + a*sin(e + f*x))^(5/2), x)